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Abstract

Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi 

form a fascinating and important group of natural products, many of which have shown promise as 

medicines. Fungi in particular have been important sources of natural product polyketide 

pharmaceuticals. While the structural complexity of these polyketides makes them interesting and 

useful bioactive compounds, these same features also make them difficult and expensive to 

prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are 

prepared through fermentation or semi-synthesis. However, elucidation and engineering of 

polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of 

established genetic tools and of understanding of the regulation of fungal secondary metabolisms. 

Saccharomyces cerevisiae has many advantages beneficial to the study and development of 

polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied 

metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, 

studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this 

versatile tool has given us into the mechanisms and products of fungal PKSs.

1. Introduction

Small molecule secondary metabolites produced by organisms such as plants, bacteria, and 

fungi form a fascinating and important group of natural products. Many of these natural 

products with diverse bioactivities have been important sources of medicines. 
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Approximately 50% of all new chemical entity small molecules approved by the U.S. Food 

and Drug Administration (FDA) from 2000–2010 and nearly half of the drugs approved 

from 1994–2008 were derived from natural products (Newman and Cragg, 2012; Harvey, 

2008).

Polyketides are one of the major classes of natural products with diverse chemical structures 

and biological activities. Fungi in particular have been important sources of polyketide 

pharmaceuticals or virulence factors (Hertweck, 2009), and several examples of well-known 

fungal polyketides are included in Figure 1. Many of these compounds display clinically 

relevant activities against human diseases. For example, simvastatin, lovastatin, and 

mevastatin are all structurally related, natural product-derived cholesterol-lowering 

medications currently on the market (Barrios-González and Miranda, 2010). Squalestatin is 

an inhibitor of squalene synthases and also shows potential as a cholesterol-lowering 

medication (Baxter et al., 1992). In addition to the compounds displaying anti-

hypercholesterolemia properties, several polyketides have been studied for their potential 

anticancer activities. Specifically, cytochalasin E has been shown to inhibit angiogenesis and 

tumor growth, and has been considered for use in cancer treatment and age-related macular 

degeneration (Udagawa et al., 2000). Brefeldin A has also shown potential as an anticancer 

agent due to its induction of apoptosis in several cancer cell lines, shown to be via activation 

of the mitochondria-mediated cell death pathway in ovarian cancer cells (He et al., 2013; 

Lee et al., 2013). Mycophenolic acid is a known immunosuppressant for organ-transplant 

patients but has shown potential as a method of inducing apoptosis in tumor cells through 

inosine monophosphate dehydrogenase (IMPDH) inhibition (Bentley, 2000). Griseofulvin 

was launched as antifungal agent in the 1950s and has now attracted renewed attention for 

its anticancer and antiviral activities (Petersen et al., 2014). However, there are fungal 

polyketides hazardous to human health, such as aflatoxins, which are the primary 

mycotoxins produced by some Aspergillus sp. and considered to be the most potent naturally 

occurring carcinogens (Roze et al., 2013).

While the structural complexity of these polyketides makes them interesting and useful 

bioactive compounds, these same features also make them difficult and expensive to prepare 

and scale-up using synthetic methods. Currently, nearly all commercial polyketides are 

prepared through fermentation or semi-synthesis (Dechert-Schmitt et al., 2014; Wong and 

Khosla, 2012). Thus, elucidating the biosynthetic pathways of polyketides and 

characterizing the pathway enzymes is necessary for the production and diversification of 

natural products for pharmaceutical applications (Tibrewal and Tang, 2014). However, 

efforts to elucidate and engineer polyketide pathways in the native filamentous fungi hosts 

are often hampered for the following reasons: 1) many fungal hosts lack established genetic 

tools; 2) the native hosts of desired natural products may have low biomass accumulation 

and produce low concentrations of the desired product; 3) fungal hosts often produce many 

secondary metabolites that can lead to significant background, allowing the possibility of 

cross-reactivity between pathways, and complicating the analysis of specific pathways; 4) 

transcriptional regulation of fungal natural product clusters is complex and not fully 

understood; and 5) there is no universal expression system with specified culture conditions 

that can be applied uniformly to fungal natural product pathways and their native hosts 
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(Anyaogu and Mortensen, 2015; Brakhage, 2013; Schümann and Hertweck, 2006; Siddiqui 

et al., 2012). For these reasons, a versatile heterologous host for the study and engineering of 

fungal polyketide synthases (PKSs) is desired.

As one of the most intensively studied single-celled eukaryotes in fundamental and applied 

molecular biology research, Saccharomyces cerevisiae has proven to be a useful and 

prominent industrial host for recombinant protein production (Mattanovich et al., 2012). S. 

cerevisiae is widely used not only in the food and beverage industry, but also in the 

production of bioethanol and fine chemicals (Nevoigt, 2008). Specifically, S. cerevisiae has 

many advantages beneficial to the elucidation and engineering of heterologous biosynthetic 

pathways from filamentous fungi: 1) A number of genetic tools for protein expression and 

pathway construction in yeast have been developed; 2) it is a unicellular organism well-

suited for large scale fermentation; 3) S. cerevisiae has a limited native secondary 

metabolism, which minimizes the background and potential interference with heterologous 

pathways; 4) S. cerevisiae grows more rapidly than most filamentous fungi and it is 

considered a GRAS (generally regarded as safe) organism by the FDA (Nevoigt, 2008). In 

addition, yeast naturally produces common polyketide building blocks such as acetyl-CoA 

and malonyl-CoA; as well cofactors such as NADPH and S-adnesylmethioine, which 

facilitate the production of fungal polyketides with minimal integration of heterologous 

genes (Kealey et al., 1998). Like filamentous fungi, yeast is also classified as a fungus and is 

expected to be a capable expression host for fungal proteins that are important for polyketide 

pathways. For example, S. cerevisiae can functionally express eukaryotic cytochrome P450s 

because these enzymes often anchor in the endoplasmic reticulum, which is absent in 

prokaryotes (Pompon et al., 1996).

Using yeast as a heterologous host presents some challenges, such as required genes for PKS 

activation, an inability to splice most fungal introns, low production of necessary precursors, 

a lack of compartmentalization, and potential toxicity. However, the advantages of S. 

cerevisiae have allowed increased understanding of fungal polyketide pathways and 

biosynthesis (Tsunematsu et al., 2013). For example, of the polyketides in Figure 1, the 

lovastatin and brefeldin A biosynthetic pathways were identified using heterologous yeast 

expression (Barriuso et al., 2011; Ma et al., 2009; Zabala et al., 2014), and the effects of 

statins, brefeldin A, mycophenolic acid, and griseofulvin have all been studied in yeast 

(Athlin et al., 1987; Desmoucelles et al., 2002; Kuranda et al., 2010; Leszczynska et al., 

2009; Maciejak et al., 2013; Shah and Klausner, 1993). Aflatoxin pathway genes have been 

expressed heterologously in yeast in order to study aflatoxin biosynthesis, and its mode of 

action has also been studied using yeast (Fasullo et al., 2008; Kelly et al., 2002; Yabe et al., 

2012). This review will focus on the use of S. cerevisiae as a tool for the discovery, study, 

and production of fungal PKSs and their natural products.

2. Introduction to polyketide synthases

The diverse structures of polyketides are biosynthesized from short-chain carboxylic acid 

units by PKSs (Hertweck, 2009). PKSs have been classified into type I, type II and type III 

based on their product profiles and catalytic domain architecture (Shen, 2003) Type I PKSs 

are large multidomain enzymes in which catalytic sites are juxtaposed in an assembly line 
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fashion. The three essential domains for the elongation of the polyketide chain are β-

ketoacyl synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP). Other domains 

that control the degree of reduction of β-keto groups may be present. These are 

ketoreductase (KR), dehydratase (DH) and enoyl reductase (ER) domains. Other frequently 

found tailoring domains include the methyltransferase (MT) domain, which introduces an α-

methyl group immediately after a round of chain elongation; the thioesterase (TE) domain, 

which releases the polyketide product from the enzyme by hydrolysis, esterification or 

macrocyclization (Keatinge-Clay, 2012); the reductase (R) domain which releases the 

polyketide product from the enzyme by two or four electron reduction or Dieckmann 

condensation (Du and Lou, 2010); a special type of TE domain called TE/CLC (Claisen-like 

cyclase) which catalyses Claisen-type condensations to release the products (Chooi and 

Tang, 2012). Type II PKSs are a set of multienzyme complexes that act iteratively and are 

frequently responsible for the biosynthesis of aromatic polyketides in bacteria. Type III 

PKSs are homodimers of KSs which catalyze the priming, extension, and cyclization of 

small polyketides, such as chalcone, in an ACP-independent fashion. (Shen, 2003; Yu et al., 

2012).

The majority of PKSs from filamentous fungi are type I PKSs. Unlike the multimodular 

bacterial type I PKSs that operate in a collinear fashion in which each set of domains (a 

module) are used once in the construction of the polyketide, fungal type I PKSs contain only 

one set of catalytic domains which are used iteratively in a well-programmed fashion to 

biosynthesize the final products. Hence, fungal PKSs are also known as iterative type I 

PKSs (iPKSs) (Figure 2). Furthermore, based on the extent of β-keto reduction catalyzed by 

the iPKSs, the fungal iPKSs can be classified into three subgroups: nonreducing PKSs (NR-

PKSs) that produce aromatic compounds such as norsolorinic acid, the precursor to aflatoxin 

(Yu et al., 2004), via the product template (PT) domain which is necessary for synthesizing 

these ring-shaped products (Chooi and Tang, 2012); partially-reducing PKSs (PR-PKSs) that 

produce compounds such as 6-methylsalicylic acid (6-MSA) (Beck et al., 1990); and highly-

reducing PKSs (HR-PKSs) that produce more reduced compounds such as lovastatin (Chooi 

and Tang, 2012; Cox, 2007). In addition, an HR-PKS can be fused to a nonribosomal 

peptide synthetase (NRPS) module to form a hybrid PKS-NRPS, which can lead to the 

biosynthesis of tetramic acid-containing products (Boettger and Hertweck, 2013). 

Collectively, the different combinations and programming rules of the iPKSs, along with 

further tailoring of the initial scaffolds by other enzymes, have led to the tremendous 

structural and functional diversity of polyketides isolated from fungal species.

3. The S. cerevisiae toolbox for cloning and enzyme reconstitution

3.1 Molecular biology tools of S. cerevisiae for cloning and reconstitution of heterologous 
pathways

Polyketides and other secondary metabolites are biosynthesized by a series of enzymes 

encoded by genes that are typically clustered together in the genomes of the producing 

organisms (Smith et al., 1990a). The clustering of related genes has been instrumental in the 

discovery and engineering of natural product pathways in both bacteria and fungi (Keller et 

al., 2005). Due to this clustering, the cloning and expression of polyketide biosynthetic 
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enzymes can be accomplished with only one continuous genomic DNA fragment containing 

the entire cluster. However, the cloning or assembly of the pathway in a suitable vector is 

still a challenge because the large size of most gene clusters, or even a single PKS-encoding 

gene (iPKSs genes are typically ~10 kB), is usually too large to be amplified by PCR 

efficiently and correctly.

One strategy to capture entire gene clusters is to construct a genomic DNA library with a 

suitable vector and chemically screen for clones that may carry a functional cluster. For 

example, in the first heterologous expression of penicillin, a cosmid containing the penicillin 

biosynthetic gene cluster from Penicillium chrysogenum was screened from a cosmid library 

using a DNA probe of the homologous isopenicillin N synthetase from Flavobacterium sp. 

SC 12,154. This cosmid was then transformed into Neurospora crassa and Aspergillus 

niger, which led to the production of authentic penicillin V in both transformed hosts (Smith 

et al., 1990b). However, this method can fail when the size of the gene cluster is larger than 

the capacity of a cosmid, or the library does not include a cosmid clone that contains all of 

the genes involved in the biosynthesis of the natural product. Recently, Bok et al. 

constructed an unbiased shuttle BAC library of Aspergillus terreus ATCC2054 with the 

vector containing both the E. coli replicon and Aspergillus autonomously replication 

sequence (AMA1). The average insert size was about 100 kb, which can cover all genes and 

regulatory elements of the biosynthetic pathway and be used successfully in the 

heterologous expression of secondary metabolites (Bok et al., 2015). However, the 

construction of high quality unbiased BAC library is time-consuming and labor-intensive, so 

alternative solutions have been explored using S. cerevisiae.

Yeast has been developed extensively as a synthetic biology tool for the cloning and capture 

of entire biosynthetic gene clusters (Figure 3). One significant advantage of yeast is that 

homologous recombination takes place far more frequently than ligation or non-homologous 

end joining during S. cerevisiae DNA repair (Van Leeuwen et al., 2015). This feature has 

been exploited to construct vectors containing large gene clusters. Overlapping DNA pieces 

and a linearized vector can be co-transformed into yeast spheroplasts, and the DNA 

fragments can then be joined by homologous recombination to form intact, selectable 

vectors. This method is generally known as Transformation-associated Recombination 

(TAR) as well as other names such as DNA assembler (Larionov et al., 1996; Shao et al., 

2009). Oldenburg et al. investigated the efficiency of TAR cloning with different lengths of 

homologous overlaps, and confirmed that while 40 bp of overlap produced optimal results, 

as few as 20 bp of overlap could generate the desired product (Oldenburg et al., 1997). TAR 

cloning is exceptionally simple and efficient, especially in the rapid cloning of large DNA 

genes or gene clusters, without using restriction enzymes or being limited by PCR product 

sizes (Kouprina and Larionov, 2006).

TAR has been used to assemble two or more overlapping cosmids in one step. Feng et al 

used TAR in S. cerevisiae to assemble the entire fluostatins biosynthetic gene cluster from a 

bacterial environmental DNA (eDNA) library. Initially, when the cosmid library was 

screened, they found that the fluostatins cluster was located across two different cosmids. In 

order to assemble the entire cluster, a S. cerevisiae/Escherichia coli/Streptomyces capture 

vector was designed with 1 kb homology regions matched to the boundaries of the gene 
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cluster. The linearized vector and the two cosmids were then co-transformed into yeast and 

homologously recombined (Feng et al., 2010). Yeast based TAR has also been used to 

capture large DNA fragments from the genome directly (Kouprina and Larionov, 2006). 

Analysis of the genome of a marine bacterium, Saccharomonospora sp. CNQ-490, by 

Yamanaka et al revealed a putative NRPS gene cluster similar to the gene cluster 

responsible for synthesis of the antibiotic daptomycin in Streptomyces roseosporus. To mine 

this gene cluster, 1 kb DNA fragments matching the boundaries of the targeted gene cluster 

were cloned by PCR and inserted into the capture vector. The linearized capture plasmid and 

genomic DNA were co-transformed into yeast to capture the cluster. The resultant plasmid 

carrying the cluster was directly used for heterologous expression, leading to the 

heterologous production of taromycin A (Yamanaka et al., 2014).

For accurate and efficient cloning of large fungal iPKSs genes, PCR combined with yeast 

homologous recombination has been widely used in recent years. A common strategy to 

clone large intron-free iPKSs genes from cDNA for yeast expression is to first PCR amplify 

several overlapping fragments from the cDNA of the iPKSs gene, followed by one-step 

recombination into the desired expression vector in yeast. The use of cDNA is to guarantee 

the correct mRNA processing in the yeast. One recent example is the cloning and 

reconstitution of iPKSs AurA from the aurovertin biosynthetic gene cluster in 

Calcarisporium arbuscula. Mao et al amplified three overlapping fragments covering the 

intron-free aurA cDNA. The two 5′ and 3′ pieces also contained overlapping regions with 

the 2μ yeast vector pXW55, which led to placement of the entire aurA gene in the vector 

under control of the ADH2 promoter. The resulting yeast strain containing the desired 

plasmid was then used directly to elucidate the product of the iPKSs through expression of 

the encoded enzymes and analysis of the resulting products (Mao et al., 2015). Other 

examples of TAR-based assembly of iPKSs include cazF and cazM from the chaetoviridin 

biosynthetic gene cluster in Chaetomium globosum (Winter et al., 2015; Winter et al., 

2012a); bref-PKS from the biosynthetic gene cluster of brefeldin A in Eupenicillium 

brefeldianum (Zabala et al., 2014); and fma-PKS from the biosynthetic gene cluster of 

fumagillin in Aspergillus fumigatus (Lin et al., 2013). A variation of this strategy is to first 

assemble the entire iPKSs gene using overlap extension PCR (OE-PCR), followed by 

transformation into yeast along with the vector to yield the intact expression plasmid via 

recombination. This ExRec (overlap Extension PCR-yeast homologous recombination) 

method described by Ishiuchi et al was used to successfully reconstitute iPKSs from 

Chaetomium globosum and Coprinopsis cinerea (Ishiuchi et al., 2012).

Yeast homologous recombination has also been used in the refactoring of multi-gene fungal 

biosynthetic pathways for heterologous reconstitution in model hosts. Pahirulzaman et al 

reconstructed the four gene tenellin biosynthetic pathway from Beauveria bassiana for 

expression in Aspergillus oryzae. The three tailoring genes were first recombined into a 

single expression vector under the control of three different promoters. The PKS-NRPS gene 

was first cloned in a separate plasmid, followed by insertion into the three-gene plasmid via 

Gateway-mediated recombination in vitro (Pahirulzaman et al., 2012). Kakule et al also 

employed yeast homologous recombination to construct cryptic heterologous fungal PKS 

pathways in Fusarium heterosporum. The genes of interest were combined into a S. 
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cerevisiae/E. coli /F. heterosporum shuttle vector via yeast homologous recombination, 

amplified in E. coli, and expressed in F. heterosporum. The PKS CpaS from Aspergillus 

flavus, the PKS LovB and enoylreductase LovC from A. terreus, and two putative PKS-

NRPSs, PrlS and PrlC, from endophytic fungus NRRL 50135 were all successfully 

reconstituted in F. heterosporum via this strategy, leading to production of up to 1 g/L of the 

encoded polyketide (Kakule et al., 2014).

3.2 S. cerevisiae as a platform for PKS protein expression and purification

Purified iPKSs enzymes from fungal PKS biosynthetic pathways are needed for the 

functional characterization of their unique programming rules. Complete understanding of 

PKSs will also enable their abilities to be exploited to benefit the structural diversification, 

activity optimization, and generation of “unnatural” natural products (Tibrewal and Tang, 

2014). As an expression host for fungal proteins, S. cerevisiae has many advantages 

compared to prokaryotic or more complex eukaryotic hosts. Unlike bacterial hosts, such as 

E.coli, S. cerevisiae has the machinery for secretory pathways and post-translational 

modifications (Mattanovich et al., 2012). Compared to mammalian and plant cells, S. 

cerevisiae has fast growth and allows easy genetic manipulation.

Nevertheless, there are some genetic modifications that were made to S. cerevisiae to ensure 

functional expression of iPKSs. Deletion of the two vacuolar protease genes (PEP4 and 

PRB1), encoding the aspartyl protease and proteinase B respectively, significantly increases 

the expression level of recombinant fungal iPKSs. The strain BJ5464 (MATα ura3-52 his3-

Δ200 leu2-Δ1 trp1 pep4::HIS3 prb1 Δ1.6R can1 GAL) was therefore chosen for protein 

expression (Cardenas and Da Silva, 2014; Jones, 1991). In addition, the yeast host must 

ensure correct post-translational modification of the ACP domain of iPKSs. The active site 

serine of ACPs must be modified with a phophopantetheinyl moeity to afford the holo 

version. While yeast has its endogenous 4′-phosphopantetheine (pPant) transferase that 

transfers pPant from coenzyme A to ACP domain of fatty acid synthases, the ACP domain 

of most fungal iPKSs cannot be modified and hence the iPKSs is not active. Kealey et al 

confirmed that there were almost no functional 6-methylsalicylic acid synthases (6-MSAS) 

expressed in the S. cerevisiae without a heterologous pPant transferase (Kealey et al., 1998; 

Lee et al., 2009). To this end, npgA, a pPant transferase gene from Aspergillus nidulans (Lee 

et al., 2009; Wattanachaisaereekul et al., 2007) was integrated into the genome of S. 

cerevisiae BJ5464 to yield BJ5464-NpgA. Using a sensitive fluorescent assay, the authors 

showed that expressed fungal PKSs were efficiently phosphopantetheinylated in the 

engineered strain (Lee et al., 2009). This strain has subsequently been used widely in the 

expression and purification of functional iPKSs, as first demonstrated with the 335 kDa 

lovastatin nonaketide synthase LovB (Ma et al., 2009).

4. Yeast as a platform for studying the function of fungal iPKSs

S. cerevisiae has been used extensively as a host for the expression and characterization of 

iPKS pathways, and to link fungal polyketide natural products to the gene clusters that 

produce them. For example, while investigating the biosynthesis of the protein transport-

inhibitor Brefeldin A (BFA), Zabala et al sequenced the producing organism Eupenicillium 

brefeldianum ATCC 58665. From the numerous gene clusters that contained iPKSs, one 
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putative gene cluster encoding an HR-PKS and numerous P450 genes was proposed to be 

most likely involved in BFA biosynthesis. Genetic manipulation of the producing organism 

proved to be extraordinarily difficult. Therefore, the authors performed direct expression in 

yeast to investigate the role of the HR-PKS. The HR-PKS gene and the partnering 

thiohydrolase gene were cloned into two vectors from cDNA and heterologously expressed 

in S. cerevisiae BJ5464-NpgA. While the authors did not observe the completed core 

structure of BFA, an acyclic octaketide consistent with the length of BFA was recovered. 

The oxidation patterns of the octaketide product were consistent with those observed in 

BFA, thereby providing strong evidence linking this gene cluster to BFA (Zabala et al., 

2014).

Yeast has also been used to connect an orphan NR-PKS gene cluster to the biosynthesis of 

fungal aromatic polyketide TAN-1612. Li et al identified a candidate cluster in Aspergillus 

niger that was presumed to be involved in the production of known compound TAN-1612. 

To verify the function of this cluster, the putative NR-PKS encoded by the adaA gene was 

cloned from cDNA into a yeast 2μ expression plasmid and the three tailoring genes adaB-D 

from the cluster were cloned into a separate plasmid. After two days of culturing, S. 

cerevisiae BJ5464-NpgA expressing these two plasmids produced TAN-1612 (Li et al., 

2011). Subsequent investigations using the yeast host revealed the product of the NR-PKS 

alone, as well as the individual functions of the tailoring enzymes. Similarly, Zhou et al 

utilized yeast to confirm that two iPKSs, an HR-PKS Rdc5 and an NR-PKS Rdc1, were 

involved in the biosynthesis of the radicicol precursor in Pochonia chlamydosporia. 

Heterologous expression of these iPKSs, cloned from genomic DNA, was performed in S. 

cerevisiae BJ5464-NpgAand led to the production of (R)-monocillin II, an intermediate in 

radicicol biosynthesis. This result confirmed that the two iPKSs function collaboratively in 

the biosynthesis of the resorcylic acid lactone and allowed a closer study of the functions of 

these enzymes (Zhou et al., 2010). This led to the yeast-based reconstitution of other dual 

iPKSs clusters from fungi, including those of chaetoviridine, resorcylides, lasiodiplodins, 

and cuvularins (Xu et al., 2014).

Chooi et al. sought to identify virulence factors from Parastagonospora nodorum, a wheat 

pathogen affecting wheat yields globally. In the course of their investigation, they found that 

SN477, a PR-PKS gene, was highly upregulated during the pathogen infection. When 

SN477, was cloned from cDNA under the ADH2 promoter and transformed into S. 

cerevisiae BJ5464-NpgA, (R)-mellein was produced by the yeast host, revealing that SN477 

is the only enzyme required for (R)-mellein synthesis. Though (R)-mellein showed no 

relevance to the virulence against wheat, it was able inhibit the germination of wheat seeds 

(Chooi et al., 2015).

In addition to serving as a host for linking polyketide metabolites to their corresponding 

iPKSs, the yeast iPKS expression platform has also proven to be useful in the mechanistic 

studies of these highly programmed machineries. One example is the characterization of 

LovB, an HR-PKS from Aspergillus terreus that is involved in the biosynthesis of the 

cholesterol-lowering compound lovastatin (Kennedy et al., 1999). The low yield of 

functional LovB (335 kDa) recovered from Aspergillus-based expression hosts significantly 

hindered the biochemical study of this model HR-PKS. When expressed from S. cerevisiae 
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BJ5464-NpgA, a purified LovB yield of ~4.5 mg/L was achieved, thereby providing 

sufficient amounts for in vitro biochemical investigations (Ma et al., 2009). Reconstitution 

of LovB with its enoylreductase LovC demonstrated that the enzyme is precisely 

programmed to synthesize the expected product dihydromonacolin L when the needed 

cofactors (NADPH and SAM) are supplied. After perturbing the system through removal of 

one or more of the required cofactors or LovC, LovB produced a series of conjugated α–

pyrones that are drastically different in structure from dihydromonacolin L. However, 

detailed structural characterization of these shunt products revealed that releasing pyrones is 

one mechanism by which LovB can clear its ACP of incorrectly tailored intermediates, 

thereby providing insight into how iPKSs can maintain their product fidelity. Subsequently, 

using the yeast expression platform and in vitro characterization, Xu et al discovered a 

previously hidden thioesterase, LovG, encoded in the pathway to be the enzyme responsible 

for both the release of dihydromonacolin L from LovB and significant increases in its 

turnover rate (Xu et al., 2013a).

Using the same yeast expression host, Xie et al. also reconstituted the activities of the 

lovastatin diketide synthase (LovF) using purified enzymes. While architecturally similar to 

LovB, the authors showed that this enzyme produces an enzyme-bound α-methylbutyrate 

diketide using Fourier Transform Mass Spectrometry (FTMS) of proteolyzed LovF 

fragments. Offloading of the product was demonstrated to be carried out by the 

acyltransferase LovD, which transfers the α-methylbutyrate to the C8-hydroxyl group of 

monacolin J to yield the final product, lovastatin. Kinetic analysis using LovF and smaller 

acyl mimics such as α-methylbutyryl-CoA or α-methylbutyryl-SNAC demonstrated protein-

protein interactions between the LovF ACP domain and LovD are highly specific, as 

significant penalties to the acyltransfer reaction were observed when small molecules 

thioester carriers were used in place of the ACP domain. This was the first demonstrated 

acyltransferase mediated product release from an iPKSs and since then this mechanism has 

been found to be widely adopted by other fungal PKS pathways (Chooi and Tang, 2012; Xie 

et al., 2009). Together with the functional reconstitution of the lovastatin P450 LovA in 

yeast (Barriuso et al., 2011), the entire six-gene biosynthetic pathway of lovastatin has been 

functionally elucidated in S. cerevisiae, paving the way for heterologous pathway 

construction and engineering.

In another example, Wang et al. demonstrated the aryl-aldehyde formation in the 

biosynthesis of an NR-PKS through heterologous expression of a cryptic NR-PKS and an 

NRPS-like gene from Aspergillus terreus in yeast. When the cryptic NR-PKS ATEG03629 

was expressed in S. cerevisiae BJ5464-NpgA, 5-methyl orsellinic acid (5-MOA) was 

produced. However, when both ATEG03629 and ATEG03630, an NRPS-like gene with a 

terminal reductase domain, were co-transformed into the yeast host, 2,4-dihydroxy-5,6-

dimethyl benzaldehyde was produced in addition to 5-MOA. Both ATEG03629 and 

ATEG03630 were cloned from genomic DNA using exons predicted from bioinformatics 

analysis. The in vivo results indicated that the NRPS-like protein catalyzes the aryl-acid to 

aryl-aldehyde conversion. To further confirm the activity of ATEG03630, the enzyme was 

purified from BJ5464-NpgA. In vitro experiments of ATEG03630 with the substrate 5-

MOA and cofactor NADPH confirmed the catalytic activity of ATEG03630. Though these 
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compounds had been reported previously, their biosynthetic origins had never been 

established (Wang et al., 2014).

As the above examples demonstrate, yeast is a useful and versatile tool for production of 

diverse polyketides and their associated mega-enzymes in sufficient quantities for in vitro 

mechanistic studies of iPKSs. These applications of S. cerevisiae improve the knowledge of 

biosynthesis of natural products and accumulate enzyme tools for drug discovery and the 

synthesis of new natural products.

5. Engineering production of fungal PKSs and polyketides in yeast

The deletion of native proteases and the integration of a heterologous pPant transferase have 

been discussed earlier as essential for the functional expression of fungal iPKSs in S. 

cerevisiae. Other methods of increasing the titer of the final polyketide product include 

increasing the supply of the common polyketide precursors acetyl-CoA and malonyl-CoA, 

and introducing self-resistance genes to mitigate the toxicity of final product. These 

metabolic engineering strategies can be employed in the production of both natural and 

engineered, unnatural polyketides in yeast. The route from the discovery of novel 

polyketides to high production in yeast is outlined in Figure 4.

5.1 Strain engineering for high titers via increased precursor production

Increasing the supply of the precursors is one common metabolic engineering strategy to 

increase the titer of the final product (Krivoruchko and Nielsen, 2015). Common polyketide 

precursors acetyl-CoA and malonyl-CoA are produced endogenously by yeast, but 

metabolic engineering is required to produce larger quantities of these substrates. Recent 

efforts to increase precursor production have focused both on enzyme overexpression and 

engineering, as well as on directing carbon towards the desired precursors via deletion of 

competing pathways.

The ACC1 gene encodes acetyl-CoA carboxylase, which catalyzes the conversion of acetyl-

CoA to malonyl-CoA. Wattanachaisaereekul et al overexpressed the native yeast ACC1 

through replacing the native promoter of ACC1 with a strong constitutive TEF1 promoter in 

a 6-MSA polyketide production S. cerevisiae strain, increasing the titer of 6-MSA by 60% 

(Wattanachaisaereekul et al., 2008). Choi et al. improved the activity of ACC1 by site-

directed mutagenesis, leading to 3-fold increases in 6-MSA levels (Choi and Da Silva, 

2014).

Metabolic pathway analysis in the well-studied S. cerevisiae has been used to determine 

how to direct carbon towards the desired product. Cardenas et al specifically increased the 

titer of precursor acetyl-CoA through the deletion of 15 genes identified during pathway 

analysis of glucose-6-phosphate, an acetyl-CoA and malonyl-CoA precursor (Cardenas and 

Da Silva, 2014). Lian et al redirected glycolytic flux to the production of acetyl-CoA via 

gene inactivation of ADH1 and ADH4 from the competing ethanol pathway and GPD1 and 

GPD2 from the competing glycerol pathway (Lian et al., 2014). Chen et al over-expressed 

the endogenous ADH2 and ALD6 genes as well as a mutant heterologous acetyl-CoA 

synthetase from Salmonella enterica to redirect carbon flux from acetaldehyde to cytosolic 
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acetyl-CoA. They also reduced carbon loss from the pool of acetyl-CoA by inhibiting CIT2, 

a peroxisomal citrate synthase, and MLS1, a cytosolic malate synthase. Using this platform 

to produce α-santalene led to a four-fold increase in titer compared to the reference strain 

(Chen et al., 2013).

5.2 Strain engineering for high titers via toxicity mitigation

One challenge of using yeast as a cell factory to produce high titers of fungal polyketides is 

that many bioactive secondary metabolites are toxic in high concentrations (Martín et al., 

2005). Some strategies for producing toxic compounds in cell factories include using 

inducible promoters to decouple cell growth from compound production (Nevoigt, 2008); 

overlaying an organic solvent like dodecane on the top of the culture to remove the toxic 

compound as it is produced (Rodriguez et al., 2014); and overexpressing native, broadly-

specific transport proteins to remove toxic compounds from the cell (Valle Matta et al., 

2001). Native producers often evolve their own solutions to protect themselves from the 

presence of toxic compounds, such as specific transporter proteins or other enzymes that 

confer self-resistance to the native host (Martín et al., 2005). These self-resistance 

mechanisms can take the form of product-specific transporters like the putative transporter 

cazK from Chaetomium globosum and the putative efflux pump lovI from A. terreus 

(Kennedy et al., 1999; Winter et al., 2012b). Recently, Ley et al showed that integration of 

the putative efflux pump mlcE, from the compactin PKS cluster of P. citrinum, into the S. 

cerevisiae genome conferred increased resistance to mevastatin, lovastatin, and simvastatin, 

as compared to the wild type strain. MlcE was shown to be a specific transporter and 

restored the growth rates of yeast in the presence of up to ~800 mg/L of exogenously added 

lovastatin (Ley et al., 2015). Past analyses of fungal PKS clusters have primarily focused on 

reconstitution of the enzymes necessary for the biosynthesis of the encoded natural product, 

but, as Ley, et al showed, future work incorporating more of the putative self-resistance 

genes into heterologous polyketide production hosts has the potential to significantly 

increase final product titers (Ley et al., 2015).

6. Combinatorial biosynthesis of fungal PKSs in S. cerevisiae

Due to the contributions of natural products to the development of pharmaceuticals, there 

has been significant research toward discovering new natural products and engineering the 

biosynthesis of novel, unnatural bioactive compounds (Butler et al., 2013; Harvey, 2008; 

Newman and Cragg, 2012). One future goal is to set up an algorithm which takes a molecule 

of interest as input and outputs a sequence of natural PKS modules to produce the desired 

molecule (Poust et al., 2014). Although the synthesis of new “unnatural” natural products 

via combinatorial biosynthesis has been pursued in bacterial polyketide antibiotics for more 

than 15 years (McDaniel et al., 1999), there had been little progress in the field of fungal 

PKSs until recently. In 2013, Xu et al. reported the reprogramming of the first-ring 

cyclization of two benzenediol lactones (BDLs) (Xu et al., 2013c). BDLs are a family of 

fungal polyketides with diverse structural features and wide-ranging bioactivities. The BDL 

family is composed of resorcylic acid lactones (RALs), connected at C2–C7, and 

dihydroxyphenylacetic acid lactones (DALs), which feature a C3–C8 bond (Shen et al., 

2014). The biosynthesis of these fungal polyketides involves pairs of collaborating iPKSs: 
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an HR-PKS which passes its product to an NR-PKS for further modifications (Zhou et al., 

2008). Xu et al reconstituted heterologous HR-PKS and NR-PKS pairs from A. terreus and 

Chaetomium chiversii in BJ5464-NpgA and confirmed that the product template (PT) 

domains of the fungal NR-PKSs regiospecifically catalyzed the first-ring aldol cyclization, 

leading to the characteristically different polyketide folding modes of RALs and DALs. 

Next, rational reprogramming of the regiospecific first-ring cyclization was realized by 

domain replacement and site-directed mutagenesis (Xu et al., 2013c). Using the same 

BJ5464-NpgA system, Xu et al. expressed chimeric iPKSs enzyme pairs, resulting in the 

biosynthesis of unnatural BDLs, and found that the thioesterase (TE) domain acts as the 

decision gate for releasing the final product from a fungal NR-PKS. This indicated that in 

combinatorial biosynthesis, the TE domain must be able to accept altered polyketide 

intermediates and release unnatural natural products with the desired structure (Xu et al., 

2013b).

After the characterization of different domains of HR-PKSs and NR-PKSs in the 

biosynthetic pathways of BDLs, Xu et al. deployed yeast as a tool to investigate whether 

noncognate HR-PKS and NR-PKS pairs could interact with each other efficiently (Xu et al., 

2014). Through the combinatorial expression of random pairs of iPKSs subunits from four 

BDL biosynthetic pathways from A. terreus, C. chiversii, Lasiodiplodia theobromae, and 

Acremonium zeae in BJ5464-NpgA, a diverse library of BDL congeners was created. One of 

these unnatural polyketides had heat shock response-inducing activity that had previously 

been shown to block multiple cancer-causing pathways (Xu et al., 2014). This combinatorial 

work by Xu et al. provided more insight into PKS design rules, which will assist in future 

engineering of diverse natural products.

Another method for the biosynthesis of unnatural natural products is to feed artificial 

precursors to organisms heterologously expressing PKSs. Zhou et al and Gao et al both fed 

large acyl SNAC (N-acetylcysteamine thioester) substrates to fungal iPKSs expressed or 

purified from BJ5464-NpgA (Zhou et al., 2010; Gao et al., 2013). Both groups were able to 

produce unnatural analogs of the relevant natural product. Gao et al found that the efficiency 

of incorporation of the unnatural precursor analogs depended on the nature of the structural 

changes between these analogs and the natural precursors (Gao et al., 2013).

Finally, novel scaffolds can be found by combining existing heterologous natural product 

pathways in yeast and analyzing the resulting compounds. Klein et al took genes from 

known natural product pathways for alkaloids, benzoxazinoids, flavonoids, flavonols, 

lignans, polyunsaturated fatty acids, tetra- and diterpenoids, and type III polyketides and 14 

libraries of cDNA from 17 different organisms including plants, animals, fungi, and 

amaurochaetes and expressed them in different combinations on yeast artificial 

chromosomes in S. cerevisiae. The resulting compounds were screened for useful 

pharmaceutical activities and for the novelty of their scaffolds (Klein et al., 2014).

The successful combinatorial biosynthesis of fungal PKSs in S. cerevisiae has not only 

shown the utility of yeast for engineering improved production of natural products, but also 

extended this paradigm from bacterial polyketides to fungal polyketides (Agarwal and 

Moore, 2014).
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7. Discovering new natural products through genome mining and 

expression in S. cerevisiae

Another method of discovering new natural product scaffolds is to find novel natural 

product gene clusters. Top-down approaches, in which newly-discovered fungi are 

cultivated and their products analyzed, can lead to the discovery of new polyketides but are 

limited to compounds that are naturally synthesized in relative abundance in the native 

environment or under laboratory conditions. However, recent advances in genome 

sequencing and increased availability of fungal genomes can facilitate the discovery and 

analysis of new polyketides from putative clusters in previously studied organisms.

For over two decades, it has been known that fungal secondary metabolites are often 

synthesized by genes physically clustered in the genome (Smith et al., 1990a). As more 

sequenced fungal genomes become available, extensive genome mining efforts have been 

launched, leading to improved algorithms to annotate putative polyketide clusters in various 

fungi (Khaldi et al., 2010; Medema et al., 2011; Priebe et al., 2011). However, the 

metabolites encoded by clusters located this way are often unknown, and subsequently 

termed cryptic or orphan. Some silent clusters found via genome mining have not lead to 

any product in the native host under laboratory conditions (Brakhage, 2013; Yin et al., 

2013).

The products of fungal iPKSs cannot be predicted solely from their sequences, so the cluster 

must be induced in the native host, or expressed and analyzed in a heterologous host 

(Anyaogu and Mortensen, 2015; Bergmann et al., 2007). Despite the many advantages S. 

cerevisiae has as a heterologous host, introns in the fungal gene cluster coding regions must 

be completely removed before the heterologous pathway is expressed in yeast due to the 

significant differences between the introns of yeast and filamentous fungi (Anyaogu and 

Mortensen, 2015; Kupfer et al., 2004). However, the accuracy of fungal intron prediction 

has been improved by programs like FGENESH and homology alignment of known related 

genes to a putative cluster (Cacho et al., 2014; Zhang, 2002). Using intron prediction 

programs or direct cloning from RNA, if possible, should allow entire clusters discovered 

through genome mining to be cloned and expressed in yeast. As discussed previously, 

Ishiuchi et al used their ExRec method of cloning from a pool of total RNA isolated from 

various fungi to express several heterologous PKSs in yeast (Ishiuchi et al., 2012). Despite 

this progress, and its success as a platform for the exploration of silent bacterial PKS 

clusters, S. cerevisiae has been underutilized for exploring new silent fungal PKS clusters 

(Feng et al., 2010; Kang and Brady, 2014; Montiel et al., 2015). The technology and tools 

are available to discover new fungal natural products with yeast if, as these authors hope, 

more groups begin to utilize them.

8. Conclusions

A number of useful synthetic biology strategies have been developed in S. cerevisiae that 

make it a versatile tool for the discovery, characterization, and production of PKSs and their 

products. Yeast has been used as a host for cloning or purifying protein and as a tool for 

ascertaining the function of enzymes in a PKS cluster as well as for individual modules of 
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PKSs. In addition, this organism has been engineered as a host for testing biosynthesis of 

unnatural “natural” products, for screening bioactive compounds to find treatments for 

specific conditions, and for use as an industrial production host for heterologous pathways.

With such a versatile tool as yeast available, it is remarkable that more work has not been 

done with fungal PKSs in yeast. The literature is abundant with examples of yeast as a 

heterologous host for plant and bacterial PKSs, but yeast has been surprisingly underutilized 

for fungal PKSs. There is a rich variety of fungal natural products left to be discovered, 

characterized, and engineered. The future of this field will involve a greater utilization of 

heterologous fungal PKS expression in yeast, especially of cryptic clusters, in order to aid in 

the discovery and production of chemically diverse compounds that will have impacts in 

fields such as fuels and drug discovery.
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1. The well-developed genetic toolbox of Saccharomyces cerevisiae has been used 

to circumvent the challenge of genetic manipulation of polyketide pathways in 

native filamentous fungi hosts.

2. Yeast homologous recombination has been a powerful tool for exploration of 

fungal polyketides and their biosynthetic pathways.

3. Metabolic engineering in yeast has led to high titers of functional polyketide 

synthases and increased polyketide titers.
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Figure 1. 
Examples of important fungal polyketides
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Figure 2. 
The domains of several types of iterative type I polyketide synthases (iPKSs) are shown 

here. The PKS domains abbreviated here are as follows: KS (Keto-synthase), AT 

(Acyltransferase), DH (Dehydratase), CmeT (C-methyltransferase), ER (Enoylreductase), 

KR (Ketoreductase), ACP (Acyl carrier protein), TE (Thioesterase), PT (Product template), 

MAT (malonyl-CoA:ACP acyltransferase), and CON (Condensation).

The PKS-NRPS hybrid also contains Non Ribosomal Peptide Synthetase domains as 

follows: C (Condensation), A (Adenylation), T (Thiolation), and R (Reduction).

The example below shows the action of a nonaketide synthase, LovB, and its partner 

enoylreductase, LovC, from the lovastatin pathway of Aspergillus terreus.
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Figure 3. 
Cloning of large DNA fragments based on the recombination of yeast

A Capture of large DNA fragments from genomic DNA

B Assembly of interested gene cluster from overlapping cosmids

C Assembly of interested pathway from overlapping PCR products
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Figure 4. 
This figure outlines the route from the discovery of novel polyketides to high production in 

yeast, using the tools and methods discussed in this review.
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